发发总结网 >策划方案

因式分解数学教案7篇

通过提前写好教案,我们可以调整和优化教学过程,教案能够帮助教师更有计划地安排反思性学习任务,发发总结网小编今天就为您带来了因式分解数学教案7篇,相信一定会对你有所帮助。

因式分解数学教案7篇

因式分解数学教案篇1

知识点:

因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:

理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:

考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

教学过程:

因式分解知识点

多项式的.因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

(1)提公因式法

如多项式

其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用

写出结果。

(3)十字相乘法

对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根x1,x2,那么

2、教学实例:学案示例

3、课堂练习:学案作业

4、课堂:

5、板书:

6、课堂作业:学案作业

7、教学反思:

因式分解数学教案篇2

一、教学目标

?知识与技能】

了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

?过程与方法】

通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

?情感态度价值观】

在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点

?教学重点】

运用平方差公式分解因式。

?教学难点】

灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程

(一)引入新课

我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

大家先观察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他们有什么共同的特点?你可以得出什么结论?

(二)探索新知

学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?

因式分解数学教案篇3

一、教学目标

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9 x139 x6+7/9 x2= ;

(2)-2.67x132+25x2.67+7x2.67= ;

(3)992–1= 。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

p165的探究(略);

2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)= ;

(2)(a+b+c)= ;

(3)(+4)(-4)= ;

(4)(-3)2= ;

(5)a(a+1)(a-1)= ;

根据上面的算式填空:

(1)a+b+c= ;

(2)3x2-3x= ;

(3)2-16= ;

(4)a3-a= ;

(5)2-6+9= 。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)= a3-a

a3-a= a(a+1)(a-1)

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

因式分解数学教案篇4

一、教材分析

1、教材的地位与作用

“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

2、教学目标

(1)会推导乘法公式

(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

(3)会用提公因式法、公式法进行因式分解。

(4)了解因式分解的一般步骤。

(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

3、重点、难点和关键

重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

难点:正确运用乘法公式;正确分解因式。

关键:正确理解乘法公式和因式分解的意义。

二、本单元教学的方法和策略:

1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.

2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.

3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.

4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.

三、课时安排:

2.1平方差公式 1课时

2.2完全平方公式 2课时

2.3用提公因式法进行因式分解 1课时

2.4用公式法进行因式分解 2课时

因式分解数学教案篇5

一、背景介绍

因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计

?教学内容分析】

因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

?教学目标】

1、认知目标:

(1)理解因式分解的概念和意义

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

?教学重点、难点】

重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

?教学准备】

实物投影仪、多媒体辅助教学。

?教学过程】

??、情境导入

看谁算得快:(抢答)

(1)若a=101,b=99,则a2-b2=___________;

(2)若a=99,b=-1,则a2-2ab+b2=____________;

(3)若x=-3,则20x2+60x=____________。

?初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】

??、探究新知

1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

?“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】

2、观察:a2-b2=(a+b)(a-b) ,

a2-2ab+b2 = (a-b)2 ,

20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

?利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

?让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】

板书课题:§6.1因式分解

因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

??、前进一步

1、让学生继续观察:(a+b)(a-b)= a2-b2 ,

(a-b)2= a2-2ab+b2,

20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)

?注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】

2、因式分解与整式乘法的关系:

因式分解

结合:a2-b2=========(a+b)(a-b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)

??、巩固新知

1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

(1)x2-3x+1=x(x-3)+1 ;

(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;

(4)4x2-4x+1=(2x-1)2;

(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;

(7)k2+ +2=(k+ )2;

(8)18a3bc=3a2b?6ac。

?针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】

2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

?学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】

??、应用解释

例 检验下列因式分解是否正确:

(1)x2y-xy2=xy(x-y);

(2)2x2-1=(2x+1)(2x-1);

(3)x2+3x+2=(x+1)(x+2).

分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

练习 计算下列各题,并说明你的算法:(请学生板演)

(1)872+87x13

(2)1012-992

??、思维拓展

1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

?进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】

??、课堂回顾

今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

?课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习、总结、学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】

??、布置作业

教科书第153的作业题。

?设计思想】

叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。

因式分解数学教案篇6

整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

aman=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p=(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的'形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式:a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

因式分解数学教案篇7

学习目标

1、了解因式分解的意义以及它与正式乘法的关系。

2、能确定多项式各项的公因式,会用提公因式法分解因式。

学习重点:

能用提公因式法分解因式。

学习难点:

确定因式的公因式。

学习关键:

在确定多项式各项公因式时,应抓住各项的公因式来提公因式。

学习过程

一.知识回顾

1、计算

(1)、n(n+1)(n-1)(2)、(a+1)(a-2)

(3)、m(a+b)(4)、2ab(x-2y+1)

二、自主学习

1、阅读课文p72-73的内容,并回答问题:

(1)知识点一:把一个多项式化为几个整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把这个多项式xxxxxxxxxx。

(2)、知识点二:由m(a+b+c)=ma+mb+mc可得

ma+mb+mc=m(a+b+c)

我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的xxxxxxxxx。如果把这个xxxxxxxxx提到括号外面,这样

ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种xxxxxxxx的方法叫做xxxxxxxx。

2、练一练。p73练习第1题。

三、合作探究

1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、

2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是xxxxxxxxxxxxx,右边是xxxxxxxxxxxxx。

3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?

(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:

(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。

例如:8a2b-72abc公因式的数字因数为8。

(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab

四、展示提升

1、填空(1)a2b-ab2=ab(xxxxxxxx)

(2)-4a2b+8ab-4b分解因式为xxxxxxxxxxxxxxxxxx

(3)分解因式4x2+12x3+4x=xxxxxxxxxxxxxxxxxx

(4)xxxxxxxxxxxxxxxxxx=-2a(a-2b+3c)

2、p73练习第2题和第3题

五、达标测试。

1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?

(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

2.课本p77习题8.5第1题

学习反思

一、知识点

二、易错题

三、你的困惑

会计实习心得体会最新模板相关文章:

幼儿刷牙教案7篇

认识梯形幼儿教案7篇

家庭安全教案7篇

班会教案模板推荐7篇

大班918教案优秀7篇

大班918教案7篇

中班英语教案7篇

玩具主题教案7篇

小学语文作文教案7篇

玩具大家玩教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    90505

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。